Deep Learning Approach for Population Estimation
from Satellite Imagery
Microsoft AI for Earth Awardee
Knowing where people live is a fundamental component of many decision making processes such as urban development, infectious disease containment, evacuation planning, risk management, conservation planning, and more.
To jointly answer the questions of “where do people live” and “how many people live there,” we propose a deep learning model for creating high-resolution population estimations from satellite imagery. Specifically, we train convolutional neural networks to predict population in the USA at a 0.01° x 0.01° resolution grid from 1-year composite Landsat imagery.
We find that aggregating our model’s estimates gives comparable results to the Census county-level population projections and that the predictions made by our model can be directly interpreted, which give it advantages over traditional population disaggregationmethods.
In general, our model is an example of how machine learning techniques can be an effective tool for extracting information from inherently unstructured, remotely sensed data to provide effective solutions to social problems.